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Abstract—With the continuous development of artificial intel-
ligence (AI), human-Al shared control has become an essential
paradigm for achieving reliable collaboration, where the key
challenge lies in efficiently arbitrating between human and Al
policies. However, the inherent uncertainty of AI policies and
their approximation errors often undermine the robustness and
effectiveness of traditional linear arbitration. To address this
issue, this paper proposes a nonlinear arbitration method based
on the Soft Actor-Critic (SAC) framework, termed UNA-SAC.
The method introduces a moment network to model AI policy
uncertainty and incorporates a cognition-inspired mechanism to
adjust the human policy, thereby constructing a distributional
nonlinear arbitration form. Theoretical analysis demonstrates
that the proposed method provides advantages in gradient
optimization and effectively mitigates the cumulative effect of
uncertainty-induced bias. Experimental results further validate
its superiority in driving assistance scenarios: UNA-SAC achieves
significant improvements in convergence speed, task success rate,
robustness, and operational performance compared with linear
arbitration and other baseline methods.

Impact Statement—Human-Al shared control plays a vital role
in safety-critical applications such as medical diagnosis, driving
assistance, and unmanned aerial vehicle collaboration. However,
the inherent uncertainty of AI policies, when fused with human
policies, often leads to reduced reliability and robustness. Tradi-
tional linear arbitration methods are particularly susceptible to
the amplification of estimation bias, thereby causing degradation
in both training and execution performance. This paper proposes
a nonlinear arbitration approach that can adaptively cope with
Al policy uncertainty, offering a new solution for shared control.
In driving assistance scenarios, the proposed method significantly
improves convergence speed and execution performance, while
demonstrating stronger stability and robustness, underscoring
its broad potential for real-world applications.

Index Terms—Shared Control, Reinforcement Learning, Non-
linear Arbitration, Uncertainty

I. INTRODUCTION

With the rapid development of artificial intelligence (AI)
technologies, human-AlI shared control, by combining human
cognitive advantages with the high-speed computation of Al,
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enables efficient and intelligent collaboration in complex en-
vironments [1]-[3]. This paradigm has been widely applied in
key domains such as intelligent medical diagnosis [4], driving
assistance systems [5], and unmanned aerial vehicle coopera-
tive operations [6], significantly improving task efficiency and
safety. However, many existing human—AI shared control
methods still rely on simple linear arbitration, overlooking
uncertainty and approximation errors in Al policies, which can
lead to degraded assistance performance or even safety risks
in complex traffic and highly dynamic flight scenarios [7],
[8]. These limitations indicate the need for a more rigorous
arbitration mechanism that explicitly accounts for uncertainty
to enable reliable human—AI shared control.

In shared control, the arbitration mechanism serves as the
core component for achieving effective collaboration, with
its primary function being to fuse the policy outputs of
humans and machine algorithms to generate the final control
command [9]-[12]. When the machine algorithm is rule-based,
arbitration is typically performed through linear weighting,
where the control actions of humans and machines are com-
bined according to weights [2]. Since in this case machine
behavior is generated by predefined control logic, making
the decision process predictable and stable, linear arbitration
performs well in balancing autonomy and user intent [13]-
[15].

In shared control with the introduction of AI algorithms,
the uncertainty of Al policies weakens the effectiveness of
linear arbitration. When the machine algorithm is Al-based, its
policy is typically parameterized by deep learning models and
optimized within supervised or reinforcement learning frame-
works. Although such policies are adaptive, their inherent
black-box nature inevitably introduces uncertainty [16]. More
critically, existing uncertainty estimation methods themselves
have limited accuracy [17]. If such estimates are directly
employed in the weight computation of linear arbitration,
estimation errors may cause the fusion ratio between human
and Al to deviate from the desired value. These deviations
exhibit a coupled amplification effect during the training itera-
tions: incorrect weight allocation generates biased training data
distributions, which in turn affect the update of the Al policy;
the updated policy then produces new uncertainty estimation
errors, further influencing subsequent weight allocation. Over
long-term iterations, this coupled bias effect continuously
amplifies policy deviation, leading to slower convergence,
degraded policy quality, and reduced stability and safety in
complex environments.

Therefore, existing linear arbitration methods for human-Al
shared control exhibit inherent limitations: the bias in uncer-
tainty estimation can be amplified during weight fusion and
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fed back into policy updates, resulting in distorted optimization
and degraded performance.

However, existing studies are not yet systematic and largely
rely on linear weighting, with little explicit modeling of the
coupling between uncertainty estimation and arbitration. To
address this issue, this paper proposes an Uncertainty-Aware
Nonlinear Arbitration method, termed UNA-SAC, which is
built upon the Soft Actor-Critic (SAC) [18] framework. The
proposed method introduces a nonlinear arbitration mechanism
into SAC, where human and Al policies are fused through the
construction of a joint distribution, with uncertainty serving
as a key regulatory factor to dynamically shape the arbitra-
tion distribution. The main contributions of this work are as
follows:

1) Nonlinear Arbitration Structure for Policy Fusion:
We design a nonlinear arbitration structure within the
SAC framework. Specifically, we parameterize the Al
policy as a Gaussian mixture and construct the arbi-
tration policy via a normalized product of the human
and Al policy distributions, thereby weakening the direct
propagation of estimation bias during arbitration. In
contrast to linear arbitration, this fusion mechanism
exhibits more favorable gradient update properties in
our theoretical analysis, alleviating the interference of
uncertainty-induced bias in policy optimization.

2) Cognition-Inspired Human Policy Adaptation under
Uncertainty: We propose a cognition-inspired human
policy model in which Al policy uncertainty is quantified
as the return variance. Specifically, a moment network
estimates the second-order moment of returns, which
is used to compute the variance. The variability of the
human policy is then dynamically adjusted according
to this uncertainty measure in a manner consistent with
cognitive regulation. This mechanism enables the fusion
process to adaptively respond to uncertainty fluctuations
and reduces the impact of estimation bias on fusion
accuracy.

3) Comprehensive Evaluation in Driving Assistance
Scenarios: We conduct comprehensive experimental
validation of the proposed method in driving assistance
scenarios. The results demonstrate that it significantly
outperforms linear arbitration and other baseline meth-
ods in terms of convergence speed and optimization
performance.

The remainder of this paper is organized as follows. Sec-
tion II reviews the related work. Section III presents the
problem formulation. Section IV introduces the preliminaries.
Section V describes the proposed UNA-SAC method. Sec-
tion VI provides the theoretical analysis. Section VII reports
the experimental validation. Finally, Section VIII concludes
the paper.

II. RELATED WORK

Shared Control: Shared control methods are generally
categorized into direct shared control and indirect shared
control [19]. Direct shared control fuses human and machine
outputs at the control-input level to generate the final control

command. For example, [20] achieves shared stabilization
under safety constraints, [21] realizes interactive optimiza-
tion by online estimating the human feedback gain and cost
weights, and [22] proposes adaptive weighting based on the
angle between human and machine signals to enable smooth
arbitration. In contrast, indirect shared control focuses on
fusing human—machine information at the intention or policy
level and indirectly influences the control input by evaluating
human policies, allocating confidence, or adjusting the pa-
rameters of a unified controller. For instance, [23] performs
policy-level fusion under a digital-twin framework, and [24]
constructs a pilot—autopilot shared-control architecture based
on the capacity for maneuver. Overall, direct shared control
has a clear structure and is easier to implement and deploy
in real time, but it is often difficult to explicitly express
task-level intent and to consistently characterize policy un-
certainty within input-level fusion; by comparison, indirect
shared control can explicitly incorporate intent information
and uncertainty measures at the policy or value-function
level, making it more suitable for decision-level collaboration
involving uncertainty-aware reasoning, albeit at the cost of
more complex modeling and higher online computational
overhead. Based on this comparison, our method adopts the
indirect shared-control paradigm: it evaluates and regulates the
human policy via the Human Policy module and constructs
a nonlinear arbitration scheme at the policy-distribution level
by incorporating Al policy uncertainty to generate the final
shared-control command. Such distribution-level fusion allows
uncertainty measures to enter the arbitration process explicitly
and helps suppress the propagation of estimation bias during
fusion, thereby improving robustness under uncertainty.
Linear Arbitration: Due to its simplicity and ease of
implementation, this paradigm has been widely adopted for
human-AlI policy fusion in shared control [2]. Existing studies
have applied linear weighting mechanisms across various
tasks, such as policy blending to balance autonomy and user
intent [13], customizable fusion parameters in robotic teleop-
eration [14], and shared linear quadratic regulator (sLQR) con-
trol for achieving minimal intervention based on reinforcement
learning [15]. With the advancement of Al technologies, linear
arbitration has also been employed in Al-driven shared control
scenarios, such as dynamic adjustment mechanisms based on
reachability value functions [25], and personalized control
approaches with adaptive fusion weights [26]. However, in
high-dimensional dynamic environments where Al policies
exhibit significant uncertainty, such methods remain limited
in the accuracy and robustness of weight allocation, making
the fusion ratio prone to distortion due to estimation bias.
Nonlinear Arbitration: To overcome the limitations of
linear arbitration in handling complex couplings within dy-
namic environments, several studies have explored nonlinear
arbitration mechanisms. For example, [27] employs deep re-
inforcement learning to achieve shared autonomy by jointly
embedding environmental observations and human inputs,
selecting actions that are both high-valued and close to human
preferences. [28] leverages a von Mises distribution to dy-
namically allocate control authority by identifying divergences
between human and Al policies. [29] proposes a residual pol-
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Fig. 1. Human-AlI shared control framework.

icy learning method that enables minimal-intervention human-
Al collaboration without relying on environment models or
user goals. Although these methods enhance the flexibility and
adaptability of arbitration, they do not account for the impact
of Al policy uncertainty on system performance.

Uncertainty: For modeling the uncertainty of Al policies,
existing methods can be broadly categorized into three types.
The first is Bayesian neural networks based on variational
inference [30], which often rely on independent assumptions
such as factorized Gaussians to simplify computation, but fail
to accurately characterize the true posterior. The second is
stochastic sampling-based Monte Carlo dropout [31], whose
estimates exhibit large fluctuations and insufficient stability.
The third is distributional reinforcement learning with value
functions [32], which is limited in its ability to capture tail
risks. Although these methods provide uncertainty quantifica-
tion for shared control, their reliability and accuracy remain
limited in high-dimensional dynamic environments. When
directly employed for linear arbitration, they can introduce
systematic bias and lead to cumulative effects during training
iterations, thereby degrading policy update quality and overall
system performance.

III. NOTATION AND PROBLEM FORMULATION

In human-AI shared control, humans and AI collaborate
to accomplish tasks, with dynamic allocation of control au-
thority and policy fusion during the decision-making process.
We model this process as a discrete-time Markov decision
process (MDP) [33], denoted by a quadruple (S, A, R, p), and
the main mathematical notations are summarized in Table I.
Specifically, S is the state space, and s € S represents the
current system state; A C R? is the d-dimensional continuous
action space, and a € A denotes an executable control action;
R : S x A — R is the reward function, defined on a
state—action pair (s,a) and returning an immediate reward r;
p:SxA— P(S) is the state transition function, where
p(s’ | s,a) denotes the probability distribution of transitioning
to the next state s’ after taking action a in state s.

At each time step ¢, conditioned on the current state si,
we model the human policy as the conditional distribution
7" (a; | st), which captures stochastic action selection and
cognitive factors; in parallel, the Al decision module, param-
eterized by 6, defines the policy distribution 7*(a; | s).
Instead of directly executing either one, the system employs
an arbitration function 5 : P(A) x P(A) — P(A), to fuse
the two into an arbitration policy

T™(ay | s¢) = B (7" (ay | s1), w5 (ar | s)) €]

TABLE I
SUMMARY OF MAIN NOTATIONS
Symbol Description
S, st State space and state at time step ¢
A, ay Action space and action at time step ¢

Tt Immediate reward at time step ¢

w(as | st) Al policy with parameter 6

Wz(at | st) Human policy under state s

wNA(a; | s4) Nonlinear arbitration policy

Qo (st,at) Critic-estimated action-value function

RzE Maximum-entropy cumulative return at time ¢
My (st,at) Moment network output

Var™ (R | sy, af")
Var"(RY | s¢,af)
o (st)

K

Return variance of the Al policy

Return variance of the human policy
Variance vector of the human policy
Number of Gaussian mixture components
W Weight of the k-th mixture component
T, (at | st) k-th Gaussian component of the Al policy

(st 0r) Mean of the k-th AI Gaussian component

o2 (st;0k) Variance of the k-th AI Gaussian component

7r§kA (at | st) Fused k-th component after nonlinear arbitration

Z(st), Zk(st) Normalization constants in arbitration

wg(at | st) Learned human model policy with parameter ¢

D, Dy Replay buffer and human demonstration dataset
where 7 is a valid probability distribution satisfying the

normalization condition. The system then samples the final
action a; ~ 7¥°(- | s;) and applies it to the environment,
which returns the immediate reward r; and the next state
s¢+1. This process iterates throughout task execution, forming
a human-Al collaborative interaction flow, as illustrated in
Fig. 1.

I'V. PRELIMINARIES

In this study, the AI policy is modeled as a reinforcement
learning agent based on SAC [18], denoted as 7} (a; | s¢). To
clearly describe its optimization process, we first introduce the
basic framework of SAC. SAC is built upon the maximum en-
tropy reinforcement learning paradigm, with the optimization
objective defined as:

max Enp |7 (re+aHEPC[s0)|, @
t=0
where v € (0,1) is the discount factor, and a@ > 0 is the
temperature coefficient that controls the weight of the entropy
regularization term. The policy entropy is defined as:

H(mg' (- [ 81) = Eaynrmpe [~ logmg' (ar [ s1)]. ()

To optimize the objective in Eq. (2), SAC models 7} (a; | s¢)
with an actor network parameterized by 6, and introduces a
critic network parameterized by ¢ to estimate the action-value
function Q4(s;,a;). The loss function of the actor network is
given by:

J(75") = Es,np, anry [logmg" (ae | s1) — Qp(st,ar)], (4)

where D denotes the replay buffer. The corresponding gradient
form is:

VoJ(mg") = Es,np, aymny [Vg(a log my" (ay | s¢)

“ausan)]
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Based on the reparameterization trick,
a; = fo(e;sy), € ~N(0,1), (6)
At this point, Eq. (5) can be rewritten as:
VoJ(my') = Es, e, [a Vologmy'(as | st)
+ (aValogm*(a | s:) — VaQy(s, a))|

X V9f9(€t§ St)}'

a=a¢

)
To improve the stability of value estimation, SAC introduces
a double-critic architecture with @)y, and Q)4,, and takes their
minimum to mitigate overestimation bias:

Qs (st ar) :=min(Qg, (s, a1), Qp, (s, ar)). ¥

Meanwhile, target critic networks )5, and @ 5, are introduced,
with their parameters updated through soft updates:

(Ei — T¢i + (1 - T)(gia 1= 17 27 (9)

where 7 € (0,1) is the soft update coefficient. The target Q-
value is defined as:

qu(suat) = min(Qq31 (s¢,at), Q¢32 (st,a)). (10)

The constructed TD target is defined as:
Yo = 7t + VY Eay yong [Q3(Se415a41) — alog mg (asia | se41)]

(1)
Accordingly, the mean squared error loss of the critic network
is defined as:

£Q(¢1) = E(st,at,rt,stJrl)wD |:(Q¢ri,(sta at) - yt)z} 5 1= 1; 2.

(12)

Within the above SAC framework, the Al policy 7} (a; | s¢)

is modeled by the actor network and continuously sampled

and updated with parameters 6 and ¢ during interactions with

the environment, so as to optimize the maximum entropy

objective and improve the expected return. Building upon

this gradient update framework, the subsequent nonlinear

arbitration mechanism incorporates human policy information

and uncertainty fusion, thereby forming an arbitration policy
optimization method for shared control.

V. METHOD

The proposed UNA-SAC framework integrates return un-
certainty modeling with a nonlinear arbitration mechanism
to achieve dynamic and adaptive human-Al collaboration.
As illustrated in Fig. 2, the overall framework consists of
five functional modules and forms a closed-loop optimization
process through interaction with the environment and the
replay buffer.

For the Al policy, the actor network parameterizes the policy
my*(as | s¢) and is optimized based on the maximum entropy
objective, while the critic network evaluates the value of state-
—action pairs, with its estimates used both to guide actor
updates and to support uncertainty fusion. To quantify the
return uncertainty of the Al policy, a moment network models
the higher-order moments of the return distribution and outputs

the estimate M (s, a;), providing an uncertainty measure for
arbitration. This measure is further fed back to the human
policy module, enabling it to dynamically adjust its action
distribution according to the confidence of the Al policy and
cognitive feedback.

The nonlinear arbitration module receives the distribu-
tions from the AI policy 7" (s¢,a;) and the human policy
7"(s¢,a;), and fuses them through an arbitration function to
generate the final arbitration policy. The arbitration policy
7NA(s;,a,) is then used to interact with the environment to
produce the execution action a;, while the interaction data
(st,a¢,7t,8¢+1) are stored in the replay buffer for the joint
update of all network modules.

A. Uncertainty Estimation

To quantify the execution uncertainty of the AI policy
under the SAC framework, we introduce a modeling method
based on the second moment of the maximum entropy return.
Inspired by [34], we design an independent moment network
My (s, a;) to approximate the conditional second moment of
the maximum entropy cumulative return given state s; and
action a;. The maximum entropy cumulative return is defined
as:

RE =" (rew + aH(T (- | 8e11)))
=0

13)

The objective of the moment network is to compute
Enp [(RF)? | s,a]. (14)

Correspondingly, the critic network estimates the first-order
expectation of the maximum entropy return:

Qy(s,a) = Ezpm [RtE | s7a] . (15)
Accordingly, the return variance can be expressed as
2
Varm (R | s,a) = My(s,a) — (Qqs(s,a))", (16)

and serves as a quantitative measure of the uncertainty in
policy outputs.

To train the moment network, we consider the squared form
of RE:

2
(RP)? = (re+9R{4q)" =i + 2yre Ry + 97 (R{L)%
a7
By taking the conditional expectation on both sides and
sampling the next action according to the policy mj°, we
obtain:

M'(sy,a) = rf + 2797y Ea,yy~orp [Qo(St41, ar11)]

(18)
+ 77 Bayyy g [Myp(St41,8041)] -

The mean squared error loss of the moment network is defined
as:

ﬁM(Q/)) = E(St,at,’r’t,st+1)~'D [(Mw(suat) - M’(st,at))ﬂ .
19)
Since the update of the moment network is independent of
the policy gradient optimization process, it can be embedded
into the SAC framework as a separate module running in
parallel with policy updates, thereby enabling the modeling
of policy execution uncertainty.
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Fig. 2. Overview of the proposed UNA-SAC framework. The architecture comprises an Actor neural network (NN) for Al policy generation, a Critic NN
for value estimation, a Moment NN for modeling return uncertainty, a Human Policy module for generating and adapting human policies, and a Nonlinear
Arbitration module that fuses human and AI policies into the final policy TI'NA(at | st). During interaction with the environment, the system produces
experience tuples (S¢, at, r¢, St4+1), which are stored in a replay buffer and used to update all network components.

B. Cognition-Inspired Human Policy Adaptation

Cognitive science research suggests that when human oper-
ators perceive a high level of uncertainty in machine policies,
they tend to reduce the variability of their behavior, thereby
exhibiting a more cautious control mode [35]. Empirical
studies have also shown [36]-[38] that when machines are
perceived as unreliable, operators are more inclined to adopt
conservative policies. Based on these findings, we propose the
following hypothesis: when the uncertainty of the AI policy
increases, the variance of the human policy will decrease
accordingly, reflecting a more conservative and restrictive
behavioral pattern.

To characterize this mechanism, we estimate the return
variances of the Al and human policies separately based on
Eq. (16). Let the return variance when the Al selects action
a;" under state s; be defined as

Var™(RF | s;,a") = My (s, af*) — (Qd,(st,a;”))g, (20)

while the return variance when the human selects action al*
under the same state
h(pE 2
Var(Rf | sy,a)') = My(st,a)) — (Qo(se,af))”. (21
Based on the ratio of the two variances, we construct the
variance of the human policy as

Var™(RE | sy, al)
. Var"(RE | s;,al) +6) 7
(22)
where 5 > 0 denotes the human sensitivity to Al uncertainty,
and ¢ > 0 is a small constant introduced to avoid division

o-,%(st) = Varh(R;E | st,ai‘) . exp(—ﬁ

by zero. When Al uncertainty is high, o (s;) decays expo-
nentially, reflecting a compensatory mechanism in which the
human policy contracts toward a more conservative behavior.

Finally, the human policy is modeled as a state-dependent
multivariate Gaussian distribution, whose mean is the current
human action a} and covariance is diag(o? (s¢)):

m(a|s;) = N(a| al, diag(ai(st))), (23)
where o (s;) is dynamically adjusted according to Al uncer-
tainty.

In practice, a? is provided by the learned human policy 71'5
described in Section V-D, and the above variance modulation
is used to capture the empirically observed tendency of human
operators to behave more conservatively when they perceive
higher uncertainty or unreliability in automation.

C. Nonlinear Arbitration

To fuse the human policy 7" (a; | s;) with the AI policy
7y" (a; | s¢), we adopt a nonlinear arbitration form based on
the product of distributions:

1
A (ay | s) = mw@” (ay | s,) 7" (ag | s¢), (24)
where the normalization factor is given by
Z(s¢) = / (@ | s,)nl(a’ | s)da’. (25)
A

Meanwhile, to enhance the expressive capacity of the Al
policy under complex state-action mappings, inspired by [39],

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on January 21,2026 at 08:35:09 UTC from IEEE Xplore. Restrictions apply.
© 2026 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Artificial Intelligence. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAI.2026.3652904

we represent the actor policy using a Gaussian Mixture Model
(GMM):

K
m (e [ s) =Y wy - 7wy (ay | sy), (26)
k=1

where

mo(ae | s¢) = N (ay | py(se; 0k), diag (o3 (se;6k))), (27)

with K denoting the number of mixture components, wy
representing the weight of the k-th component under state
st, such that 25:1 wy, = 15 and py(s¢;0;) and o7 (se; 0k)
denoting the mean and variance vector of each component,
respectively. In our implementation, the GMM is directly
embedded in the SAC actor and trained end-to-end during SAC
learning, without any separate pre-training or offline fitting
stage, i.e., its mixture parameters are updated via the SAC
objective. The k-th component distribution after arbitration is
defined as

Tp(ay | sy) = ™ (a¢ | st) g, (as | s¢), (28)

1
Zk(st)

where

Zi(s¢) = /Awh(a’ |'s¢) mpr (a’ | 's;) da’. (29)

Based on the reparameterization trick,

ar = py(se;0k) + or(se;0k) © €, € ~N(0,I).  (30)

where © denotes the element-wise product.

To improve numerical stability and decouple the optimiza-
tion of the Al policy from the human model, we apply a stop-
gradient operation to the human-policy term. In this way, the
human policy acts as an exogenous guidance signal during
updates, and the objective does not backpropagate into the
human model. This ensures that the Al actor is optimized
with respect to the intended SAC objective under a fixed
human guidance signal at each update step. We denote the

stop-gradient operator by sg(-), then
ﬁat log WgLA(at | st) := Va, log 7y (a; | s¢) a1
+ Va, log 7" (sg(ay) | ).

Accordingly, the modified objective function is given by

J(WGN?) = EStND7atN7T]g/]: [CY lOg ﬂ-gjkA(at ‘ St) - Q¢(Staat):| )
(32)
and the stochastic gradient is given by

ngJ(ﬂgf) = aVy, log WGNIf(at | st)
+ (a%at log mp (ay | s¢)
- Vat Q¢ (St7 at)) v0k at(ok)a

where o = >, apwy, and the update of the component
temperature «y, follows the method in [39]. According to
Eq. (11), the TD target is

(33)

Y =1t + 7 Eq, o [Q¢(St+1’ a; 1)

- alOgWNA(atH \ St+1)}7
(

and according to Eq. (12), the critic loss function is

£9(63) = Egs, amisiinp | (Qor(st:a0) —w)’| . i =1,2

(35)
With these modifications, we achieve the optimization of a
human-Al fused control policy under nonlinear arbitration
while preserving the original SAC framework.

Remark 1. This arbitration mechanism captures human dy-
namic responsiveness to Al policy uncertainty. When the Al
policy exhibits high uncertainty in the current state (i.e.,
when Var™(RE | s;,a) is large), the regulation mechanism
causes o, (s¢) to shrink significantly, making the human policy
distribution 7"(a | s;) more concentrated. This enhances
the dominance of the human policy in nonlinear arbitration.
Conversely, when the Al policy is relatively certain, o (s;)
increases, leading to higher variance in the human policy
distribution. In this case, nonlinear arbitration relies more on

m

the Al policy my*, resulting in an Al-dominated control mode.

Remark 2. The normalized form of the nonlinear arbitration
policy in Eq. (24) naturally exhibits a centered gradient struc-
ture, effectively reducing the variance of gradient estimation
without the need for additional variance-reduction baselines.
Specifically, according to the chain rule, we have

Vo, logmp, (s | 8t) = Vo, logmy (a; | s¢) — Vo, log Zy(st),
(36)

where

1
Vi, log Zk(st) = m /‘Aﬂ—h(a ‘ St) ﬂ—g,:(a | St)

- Vg, logmg: (a|s;) da

= EatNﬂON;;A [Vo, log ' (a | s¢)] -

37

Thus, Eq. (36) can be further written as
Vo, log WgLA(at | st) = Vo, logmy (a; | s¢)

— EaNﬂ,HNA [V@k log mp! (a | st)] ,
k
(38)
explicitly revealing the mean-centering property of the gradi-
ent.

Remark 3. When the Al policy is a unimodal Gaussian
(K = 1), the fusion result further degenerates into linear
arbitration. Specifically, for the k-th Gaussian component
of the Al policy, the new Gaussian distribution parameters
obtained after multiplication with the human policy are given
by

(o) = [diag("i(sﬁ )~ + diag(ai(st))fl} -

(39
s (s1) = SN (s1) [diag(0 (513 01)) " i 0:0)
+ diag(o (1)) "a!|. (40)

Accordingly, the nonlinear arbitration policy can be written
as
K
™A ay | s) = Z@k 'N(at | MEA(St%EEA(SO)a (41)

k=1
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Algorithm 1 UNA-SAC Algorithm

1: Initialize critic parameters ¢; target critic ¢ < ¢

2: Initialize actor parameters {0y, ay }5_,

3: Initialize mixture-weight parameters [wy, wa, ..., Wk]

4: Initialize moment parameters

5: Initialize replay buffer D < ()

6: Load pre-trained human model parameters

7: for each iteration do

8: for each environment step do

9: Observe state s;

10: Sample mixture component ¢ ~ [wy, wa, ..., Wk]

11: Sample Al action a;" ~ 7" (a; | s¢)

12: Sample human action a}' ~ 75 (a; | s¢)

13: Estimate uncertainties via Eq. (20) and Eq. (21)

14: Build cognition-adjusted human policy via
Eq. (23)

15: Form nonlinear arbitration policy W(I;IiA(at | st)
using Eq. (28)

16: Sample final action a; ~ ngA(at | st)

17: Execute a;, observe r;, S¢11 ~ p(Si+1 | St, at)

18: Store (St, ag, I't, St+1) in D

19: end for

20: for each gradient step do

21: Update critic parameters ¢ using Eq. (35)

22 p+— TP+ (1—7)9

23: for i =1to K do

24: Update actor component 6; using Eq. (33)

25: end for

26: Update moment parameters 1 using Eq. (19)

27: end for

28: if a new human demonstration arrives then

29: Store the demonstration into Dy

30: Update human model ¢ by minimizing Eq. (47)
with samples from Dy

31: end if

32: end for

where Wy, denotes the normalized weight of the fused compo-
nent. When K = 1, we have

YA (s0) = [ding(o7(s0:01)) " + ding(o(50)) ']

(42)
N (s1) = BN (sy) [diag(o (513 01)) " 01 61)

+ diag(o(se)) " (se) . (43)

If the fused mean pN*(s;) is directly taken as the output
action, the result is equivalent to linear arbitration:
WLA(at | St) = )\t . 7Th(at | St) + (1 — )\t) . 7T(T(at | St), (44)

where Ay € [0,1] denotes the weight of human control
authority.

D. Human Modeling

To reduce the burden on human participants during training,
we construct a human model to learn and simulate real human

behavior in collaborative tasks, thereby substituting for direct
human control in certain scenarios. In our implementation,
this human policy model is constructed in two stages. First,
we collect offline demonstrations from five human drivers in
the driving-assistance scenario and aggregate their trajectories
to build the demonstration dataset D, used for imitation
learning. Then, one of the drivers provides online corrections
during interactive training to further adjust the human policy
model.

We adopt an online imitation learning update mechanism
[40] to model human outputs with a policy network ! (a | s)
by minimizing the discrepancy between ﬂg(a | s) and the
empirical distribution of human outputs 7" (a | s):

" = argmg“ Es,~Ds, [d (Wh(' | 'st), WE(' [s))]. 49

where d(-,-) denotes the policy discrepancy measure, which
in this work is instantiated as the squared /5 distance between
the human action and the model output, as in Eq. (47), and
Dy, represents the dataset of human demonstrations. This
online imitation learning scheme is particularly suitable for
our shared control setting. First, by continuously updating the
human policy model on the states actually visited under UNA-
SAC, the online imitation learning scheme adapts the model to
the on-policy state distribution, rather than being restricted to
the offline demonstration distribution. This is particularly im-
portant in shared control, where the state distribution changes
as the arbitration policy evolves during training. Second, it
reduces the burden on human participants: instead of providing
full-time manual control throughout training, the driver only
needs to provide corrective actions when the current model
deviates from the desired behavior, and these corrections
are incrementally distilled into 775 . Compared with purely
offline imitation learning using a fixed demonstration dataset,
the online update mitigates distribution shift. Compared with
requiring full-time human control, it substantially reduces
human workload.

During the initialization phase of the human policy model,
we set its structure to be identical to that of the untrained actor
network and initialize its parameters using a reference policy
Trref-

WSO (at | St) — Fref‘(at ‘ St)- (46)

After each interaction, the parameters are updated based on
the newly collected human trajectory data (s;,al), with the
loss function defined as:

LH(()O) = E(st,a?)NDH |:Ha? B WE(St)Hﬂ ’

where || - ||2 denotes the £2 norm of a vector. As the iterations
proceed, the model 775 gradually approaches the real human
policy and provides auxiliary action decisions in subsequent
tasks, thereby reducing the need for frequent human involve-
ment during training.

In the subsequent experiments, this learned policy wg acts
as a surrogate for real human drivers: its outputs are used
as the human commands in the shared control loop, while
its mean behaviour is anchored to human demonstrations
and its variability is further shaped by the uncertainty-aware
adaptation mechanism described in Section V-B.

(47)
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E. UNA-SAC Algorithm

To provide a more intuitive illustration of the proposed
UNA-SAC implementation, this section presents the algo-
rithmic pseudocode in Algorithm 1. During the initialization
phase, UNA-SAC incorporates a pre-trained human model.
In the interaction phase, it estimates the uncertainty of both
Al and human actions, constructs a cognition-driven human
policy, and generates the final action through the nonlinear
arbitration mechanism. In the update phase, the algorithm not
only updates the actor-critic networks and the moment network
but also continuously refines the human model using newly
collected human demonstrations. These designs ensure that the
algorithm can better integrate human knowledge and enhance
policy robustness under uncertain environments.

VI. COMPARISON OF POLICY GRADIENTS

In policy optimization for shared control, the structure
of the arbitration mechanism directly affects the direction
and stability of gradient updates. If the arbitration amplifies
biases from external uncertainty estimates, these errors will
accumulate over multiple iterations, causing the optimization
trajectory to deviate from the optimal solution and even
leading to convergence failure. Traditional linear arbitration
policies in Eq. (44) rely on explicit uncertainty weighting;
when estimates are inaccurate, the bias is directly propagated
into gradient computation, thereby magnifying its interference
with the optimization process. In contrast, the nonlinear arbi-
tration policy in Eq. (24) fuses policies through the product
of distributions, without relying on external weight estimation,
and structurally mitigates the influence of uncertainty bias on
the update direction.

To quantitatively characterize this difference, we derive
an upper bound on the gradient discrepancy between the
nonlinear arbitration policy and the Al policy 7" based on the
reparameterized form of the maximum entropy policy gradient,
leading to the following theorem.

Theorem 1. Let the state space S and the action space A be
compact sets. Assume there exist constants C; > 0, Co > 0,
and C3 > 0 such that

IVofolloo == sup  [[Vofo(as,se)l| < Ch, (48)
st€S,a;€A
|Va, log mg"||oc < Ca, ”vathbHoo < Cs. (49)

If the {1 norm between the nonlinear arbitration policy
7NA(ay | s;) and the Al policy T3 (ay | s¢) satisfies

7~y = sup [ (7 e |G | 30| da < e
seSJA

(50)

and there exists a function k(€) such that lim._,qk(e) = 0

and ||V, log 7" ||oo < K(€), then there exists
d(€) = aCik(e) + Ci(aCs + C3) €, (51)

such that

Vo (7N2) = Vo (m)] < 6(e), (52)

and moreover §(e) — 0 as € — 0.

Fig. 3. Visualization of driving tasks. Subplots (a) and (c) show the bird’s-
eye view of Task 1 (T1) and Task 2 (T2), while (b) and (d) present the
corresponding driver’s view.

Proof. See Appendix A.

Remark 4. With the stop-gradient operation, we have rk(e) =
0, in which case the first term in the theorem vanishes.

This result indicates that when the nonlinear arbitration
policy in Eq. (24) is close to the Al policy distribution, its
gradient direction is almost aligned with that of the Al policy,
thereby avoiding the introduction of additional optimization
bias. In contrast, the linear arbitration policy in Eq. (44)
relies on the external uncertainty estimate through \;, and its
weighted-sum structure imposes a lower bound on the #; norm
between 74 and mg'. As a result, the closeness condition in
Theorem 1 cannot be satisfied, and the convergence of the
gradient discrepancy cannot be guaranteed.

VII. EXPERIMENTAL VERIFICATION

In this section, we construct a driving assistance scenario
based on the CARLA simulation platform to evaluate the per-
formance of the proposed UNA-SAC method in human-AlI co-
driving within traffic environments. The experimental environ-
ment is deployed on Ubuntu 20.04 with CARLA 0.9.14 using
the TownO5 map, and the hardware configuration includes an
NVIDIA RTX 4090 GPU. To ensure fairness and reproducibil-
ity, all models are trained and evaluated under identical system
configurations and parameter settings. Specifically, both the
actor and critic networks in UNA-SAC are implemented as
two-layer fully connected neural networks, each with 256
hidden units and ReLU activations. The discount factor is
set to v = 0.99, the soft update coefficient to 7 = 0.005,
and the replay buffer capacity to 105. The Adam optimizer
is employed with a learning rate of 3 x 10~%. Training was
repeated independently with five different random seeds to
ensure statistical robustness. During evaluation, each trained
model was tested for 50 episodes, and the final performance
was reported as the mean across these runs.
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Fig. 4. Comparison of training performance across different arbitration policies in Task 1 and Task 2. Subplots (a) and (b) show the Reward and Distance
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Fig. 5. Comparison of training performance under different uncertainty

estimators, with subplots (a) and (c) showing Task 1 and subplots (b) and
(d) showing Task 2. Subplots (a) and (b) use ensemble variance [41], while
subplots (c) and (d) use double-Q disagreement [42].

A. Experimental Settings

In the driving assistance scenario, the vehicle is jointly
controlled by a human driver and the AI decision module,
with the human retaining primary authority. The control ac-
tions are represented as two-dimensional continuous vectors
corresponding to lateral and longitudinal control. The reward
function is primarily designed to promote lane keeping and
speed stability, while also optimizing directional consistency,
trajectory foresight, and steering smoothness, with an addi-
tional acceleration reward provided during the starting phase.
At the same time, penalties are imposed for abrupt steering,
counter-steering, severe yaw, lane departure, and collisions to
ensure driving safety and stability.

To further evaluate the adaptability of the proposed method
under different driving situations, we select two representative
driving tasks. Task 1 is straight driving, where the vehicle,
under the primary control of the human driver, moves from the
green starting point to the red endpoint along a straight road
segment. Task 2 is curved road driving, where the vehicle also
travels from the green starting point to the red endpoint but
passes through a curved road segment. In both scenarios, the
system continuously perceives human operations and assists
the driver in maintaining stable driving by adjusting steering
and longitudinal control. In these experiments, we use the

human policy model trained in Section V-D to simulate human
inputs. The experimental platform consists of a steering wheel,
pedals, and a simulation screen, as shown in Fig. 3; subplots
(a)-(d) illustrate the bird’s-eye views and driver’s views of the
two representative driving scenarios.

B. Baseline Algorithms

To comprehensively evaluate the effectiveness of the pro-
posed nonlinear arbitration policy, we select five representative
baselines, which cover different paradigms including pure au-
tonomous control, linear arbitration mechanisms, distribution-
based arbitration, and residual policy learning.

1) SAC [18]: A continuous control algorithm based on
maximum entropy policy optimization, which is a widely used
and efficient reinforcement learning method. This baseline
does not incorporate any human information and serves as
a reference for pure autonomous control, providing a bench-
mark for evaluating the optimal performance without human
intervention.

2) ULA-SAC [13]-[15], [25], [26]: A shared control method
based on linear arbitration, which fuses human and Al control
actions through weighted averaging to achieve collaborative
decision-making. We implement this mechanism within the
SAC framework and incorporate the same moment network
and human cognitive adaptation policy as in our proposed
method to ensure consistency in comparison.

3) HIL-SAC [27]: Human-Al collaborative decision-
making guided by the value function, which dynamically
allocates control authority during execution by selecting ac-
tions that are both high-valued and close to human inputs.
The original method is based on DQN, and in this study
we re-implement it within the SAC framework for a unified
comparison.

4) RPL-SAC [29]: The Residual Policy Learning (RPL)
method learns a minimally invasive human-Al collaboration
policy without relying on environment models or user goals.
The original method is implemented with PPO, while in this
study we adapt it to the SAC framework to ensure consistency.

5) UNA —1: A degenerate version of the proposed method,
where the fused policy in each dimension is modeled using
a single Gaussian distribution (i.e., the number of Gaussian
mixture components K = 1). According to Remark 3, this
is equivalent to the linear arbitration policy and is used to
evaluate the performance gain of the nonlinear policy under
the same conditions.
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Fig. 6. Uncertainty estimation and similarity analysis, with Task 1 in subplots
(a) and (b) and Task 2 in subplots (c) and (d). Subplots (a) and (c) show
the uncertainty variation between human and Al policies during execution.
Subplots (b) and (d) show the relationship between human-Al similarity
and oi(st). S-Human and S-AlI indicate the similarity with human and Al
policies, respectively. T-Human and T-AI are LOWESS trend lines with shaded
areas representing 95% confidence intervals.

C. Training Performance

To comprehensively evaluate the training performance of the
proposed nonlinear arbitration method, this section analyzes
two perspectives: (i) comparing the performance of different
arbitration policies under unified experimental conditions, and
(i) examining their adaptability under different uncertainty
estimation methods.

1) Performance under Different Arbitration Policies: We
compare the training performance of different arbitration poli-
cies in Task 1 and Task 2, using the cumulative reward
per episode (Reward) and the driving distance before task
termination (Distance) as evaluation metrics, where higher
values indicate better performance.

Fig. 4 presents the training curves, where the solid lines
denote the mean performance over five runs and the shaded
areas represent the standard deviation. In Task 1 (Figs. 4(a)
and 4(b)), UNA-SAC achieves the best performance in terms
of convergence speed, final cumulative reward, and driving
distance, with relatively small variance. The degenerate linear
version UNAg-; converges faster in the early stage; how-
ever, once entering the stable phase, its curves exhibit larger
fluctuations, indicating less stable convergence. ULA-SAC
shows a lower convergence rate during training, with limited
levels of cumulative reward and driving distance. RPL-SAC
improves at a moderate pace and converges relatively early,
but its overall performance remains low and fails to reach
a higher performance ceiling. HIL-SAC converges quickly
in the early stage, with final performance lying between
UNAk-; and RPL-SAC. Standard SAC, without human input,
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Fig. 7. Heatmaps of success rates (%) across methods. HN: human noise
(added to the human policy output); AN: Al policy noise (added to the Al
policy output); HAN: human + Al policy noise (added to both stages).

struggles to handle complex tasks, and its overall performance
is significantly inferior to that of human-Al fusion policies.
In Task 2 (Figs. 4(c) and 4(d)), UNA-SAC again achieves
the highest cumulative reward and driving distance, verifying
its adaptability and stability across different task scenarios.
Overall, the proposed UNA-SAC method integrates human
and Al policies more effectively, achieving significantly better
learning efficiency and task performance than linear arbitration
and other baselines.

2) Performance under Different Uncertainty Estimation
Methods: We further investigate the adaptability of UNA-
SAC under different uncertainty estimation methods. Two
commonly used methods are adopted: ensemble variance [41],
which quantifies uncertainty through the variance of value pre-
dictions from critic networks, and double-Q disagreement [42],
which characterizes uncertainty by the magnitude of the differ-
ence between value estimates from two critic networks. In the
experiments, the algorithmic structure and hyperparameters are
held fixed, with only the uncertainty estimation method being
replaced.

Fig. 5 shows the training results. For the ensemble variance
metric (Figs. 5(a) and 5(b)), UNA-SAC achieves the fastest
convergence and the highest final cumulative reward in both
tasks; UNAg-; converges slightly slower with marginally
lower performance; ULA-SAC suffers from insufficient con-
vergence accuracy. Under double-Q disagreement (Figs. 5(c)
and 5(d)), UNA-SAC still maintains superiority in conver-
gence, performance, and stability; UNAg-; performs compara-
bly in the early stage but lags behind later; ULA-SAC remains
consistently lower with significant fluctuations. Overall, the
proposed UNA-SAC method retains its advantage across dif-
ferent uncertainty estimation metrics, validating its robustness.

D. Testing Performance

To systematically evaluate the arbitration policy after train-
ing, this section presents analysis from two perspectives: (i)
mechanism verification and (ii) performance evaluation.

1) Mechanism Validation: In the mechanism verification
part, we focus on examining the effectiveness of the cognition-
driven human policy adaptation mechanism and the nonlinear
arbitration mechanism, in order to verify whether they can dy-
namically respond to changes in uncertainty during operation
as theoretically designed.
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We first verify the implementation of the cognition-driven
human policy adaptation mechanism proposed in Section V-B.
To this end, we examine the trends of the AI action return
variance Var™ (RE | s;, al), the human action return variance
Var"(RF | s;,al), and the human policy variance o7 (s;)
during execution, in order to characterize the impact of Al
action uncertainty on the variance of the human policy across
different states. Subplots (a) and (c) of Fig. 6 show that when
the AI policy uncertainty is high, the human policy reduces
its variance to maintain stability of control authority, thereby
confirming that UNA-SAC successfully realizes this cognitive
hypothesis.

We then investigate the response characteristics of the
nonlinear arbitration mechanism proposed in Section V-C with
respect to variations in human policy variance. Specifically,
the inverse-normalized {5 norm is employed to measure the
differences between the arbitration action of UNA-SAC and
those of the human and Al policies, thereby computing the
similarity between the arbitration policy and the human policy
(S-Human), as well as with the Al policy (S-AI). Combined
with LOWESS smoothed trend lines (T-Human and T-AI) and
their 95% confidence intervals, we analyze how the similarity
evolves with respect to o (s;). Subplots (b) and (d) of Fig. 6
demonstrate that when the human policy variance is low,
the arbitration policy exhibits significantly higher similarity
to the human policy, whereas when the variance is high,
the arbitration policy gradually shifts toward the AI policy.
This result indicates that nonlinear arbitration can dynamically
adjust according to Al uncertainty, in line with theoretical
expectations, thereby further validating the effectiveness of the
proposed model.

2) Performance Evaluation: In the performance evaluation
part, we systematically assess the proposed UNA-SAC method
under different noise disturbance conditions from three per-
spectives: task success rate, average cumulative reward, and
execution characteristics, thereby validating its capability to
capture and adapt to uncertainty information.

We inject zero-mean Gaussian noise with a standard de-
viation of 5% into the control loop, with three types of
disturbance settings: HN (Human Noise), where noise is added
to the actions output by the human policy; AN (Al policy
Noise), where noise is added to the actions sampled from
the Al policy; and HAN (Human + AI policy Noise), where
noise is applied to both of the above stages simultaneously. In
each scenario, we perform 50 test runs using the same random
seeds, and a task is considered successful if the ego vehicle is
within 5 meters of the target point at the end of the task.

Fig. 7 presents the success rate comparison of different
methods in Task 1 and Task 2. The results show that UNA-
SAC achieves the highest success rates across all test scenar-
i0s. In particular, it maintains a significant advantage under
human noise, Al policy noise, and combined disturbances,
demonstrating strong robustness and adaptability. In contrast,
its degenerate version UNAg_; performs comparably to
UNA-SAC in some scenarios but exhibits a clear decline
in success rate under high-noise disturbances, indicating that
the nonlinear fusion structure provides greater advantages in
complex interference conditions. ULA-SAC shows a general
drop in success rate under noise disturbances, reflecting its
limited adaptability to uncertainty. HIL-SAC and RPL-SAC
maintain a certain level of performance under low-noise con-
ditions but degrade significantly in HAN scenarios. Standard
SAC consistently yields the lowest success rates across all
complex settings, dropping below 30% in AN-T1 and HAN-
T1, and even failing completely in AN-T2 and HAN-T2, which
highlights the difficulty of handling complex driving tasks
without the assistance of human policies.

After verifying the advantage in task success rates, we fur-
ther analyze the performance of each method under different
noise conditions from the perspective of cumulative reward,
in order to evaluate their stability and overall control quality.

Fig. 8 shows the average cumulative rewards of different
methods in Task 1 and Task 2 under various noise condi-
tions. It can be observed that UNA-SAC achieves the highest
average cumulative rewards across all noise settings in both
tasks, with relatively small standard deviations, demonstrating
strong stability and robustness. In contrast, the methods with
linear arbitration structures, UNA x—; and ULA-SAC, exhibit
slightly lower overall cumulative reward levels, indicating
the advantage of nonlinear arbitration in suppressing noise
disturbances. Other baseline methods also show significant
degradation under noisy conditions, further confirming that
UNA-SAC is more effective in mitigating disturbances and
maintaining reliable control.

However, high success rates and high cumulative rewards
alone cannot fully capture the characteristics of the driving
process. Therefore, we further conduct a comparative analysis
from two additional perspectives: task execution efficiency and
action smoothness.
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Fig. 9(a) and (c) show the survival steps in successful
episodes for each method. The results indicate that UNA-
SAC consistently requires significantly fewer steps than other
methods under all noise conditions, achieving the shortest task
completion time while maintaining a low variance even in
high-noise scenarios. In contrast, although the other baseline
methods can complete the tasks under noise-free conditions,
they generally require more steps; under noisy disturbances,
the number of steps further increases, with particularly large
fluctuations under HAN, suggesting that these methods strug-
gle to maintain efficient control in highly disturbed environ-
ments.

Fig. 9(b) and (d) present the smoothness metric, which is
computed based on the second-order differences of actions.
UNA-SAC achieves smoothness values close to 1.0 across
both tasks and all noise conditions, with highly concentrated
distributions and minimal variance, demonstrating superior
stability and driving comfort. In contrast, while other baseline
methods maintain a certain degree of smoothness under noise-
free conditions, their overall levels remain lower than those of
UNA-SAC; under noisy scenarios, their smoothness drops sig-
nificantly with larger fluctuations, making it difficult to ensure
stable trajectory control in highly disturbed environments.

VIII. CONCLUSION

This paper addresses the impact of Al policy uncertainty
on shared control arbitration and proposes a nonlinear arbi-
tration method, UNA-SAC. The method introduces a moment
network to model Al uncertainty and employs a cognition-
driven human policy adaptation mechanism to dynamically
adjust the human policy distribution. At the distributional level,
it constructs a nonlinear product fusion of human and Al
policies, fundamentally mitigating the cumulative distortion
caused by uncertainty estimation bias in linear arbitration.
Theoretical analysis demonstrates that the proposed method
ensures stability in gradient updates. Experimental results
further validate the effectiveness of UNA-SAC in driving
assistance scenarios: compared with baseline methods, it
achieves significant improvements in convergence efficiency,
task reliability, robustness, and operational performance.

Beyond the specific driving-assistance setting, the pro-
posed UNA-SAC framework provides a general approach
for integrating uncertainty-aware nonlinear arbitration into
Al-powered human—machine systems. Future research may
extend this framework to other shared control domains such as
robotic manipulation and assistive robotics, incorporate richer
models of human behaviour and trust, and combine UNA-SAC
with alternative reinforcement learning backbones to further
enhance safety and robustness in safety-critical applications.
Moreover, we will extend the interactive correction stage to
incorporate corrections from multiple drivers, thereby improv-
ing the generalizability and robustness of the learned human
policy adaptation.

APPENDIX A
PROOF OF THEOREM 1

From Eq. (7), the maximum entropy policy gradient can
be decomposed into an explicit term and a pathwise term. In

12
expectation, the explicit term satisfies
Es,.e, [Vo(alogmg(as | s¢))] =0, (A.D)
and therefore only the pathwise term needs to be retained:
VoJ () = Eg, e, [ (aVa, logm(ay | s¢)
- Va ’
Qo(st,a)) ot (ersn)
X v9f9(et§st)]
(A.2)
Define
Gr(st,ar) = aVa, logm(a; [ s) — VaQy(st, ar), (A3)
Jy(se, €) := Vo foler;se). (A4)
From Eq. (A.2), the gradient difference is
A = Vo J (a2 — VoI (m)
= Es, ¢, [Grna(sy,ana) — Gy (s, am) | Jy(se, €)
(A5)

where axa and a,, are sampled from 7N4(a; | s;) and

7y (ay | s¢), respectively. Eq. (A.5) can be decomposed into
two terms:

Al = ESt’et[(GﬂNA — Gﬂgt) (St7 aNA) Jf(St, et)], (A.6)

A2 = Est,et[(Gﬂ"é” (St7 aNA) - G’ﬂ'é" (St> am)) Jf (st7 et)] .
(A.7)

From Eq. (24), it follows that
(Gna

— Gap)(si,a) = aVa, logn"(a; | s).  (A8)

Combining ||J]|eec < C1 and ||Va, log7"||ee < K(e), we
obtain
IAL] < a||J¢]loo || Vay log 7" oo < aCy k(e). (A9)

Since ||Jf||oo < C1, it follows that

1As] <O - H]E [Bayenr [Gr] = Bagorr (G ] H
(A.10)

By [43], we have

[ Ag| < C1[|Grplloo 74 = 75|11 < C1(aCh + Cs) e.
(A.11)
Combining Egs. (A.9) and (A.11), and letting d(¢) =
aCl FC(E) + (CYCQ + 03) €, we obtain

|V J(7N2) — Vo J (mi)| < 6(€) = 0. (A.12)

As € — 0, it follows that §(e) —0. This completes the proof.
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